Nonparametric estimation for survival data with censoring indicators missing at random

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive hazards regression with censoring indicators missing at random.

In this article, the authors consider a semiparametric additive hazards regression model for right-censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non-missi...

متن کامل

Hazard estimation from right censored data with missing censoring indicators

The kernel smoothed Nelson–Aalen estimator has been well investigated, but is unsuitable when some of the censoring indicators are missing. A representation introduced by Dikta, however, facilitates hazard estimation when there are missing censoring indicators. In this article, we investigate (i) a kernel smoothed semiparametric hazard estimator and (ii) a kernel smoothed “pre-smoothed” Nelson ...

متن کامل

Nonparametric variance function estimation with missing data

In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...

متن کامل

Nonparametric estimation of current status data with dependent censoring.

This paper discusses nonparametric estimation of a survival function when one observes only current status data (McKeown and Jewell, Lifetime Data Anal 16:215-230, 2010; Sun, The statistical analysis of interval-censored failure time data, 2006; Sun and Sun, Can J Stat 33:85-96, 2005). In this case, each subject is observed only once and the failure time of interest is observed to be either sma...

متن کامل

Nonparametric HAC Estimation for Time Series Data With Missing Observations

The Newey and West (1987) estimator has become the standard way to estimate a heteroskedasticity and autocorrelation consistent (HAC) covariance matrix, but it does not immediately apply to time series with missing observations. We demonstrate that the intuitive approach to estimate the true spectrum of the underlying process using only the observed data leads to incorrect inference. Instead, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2013

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2013.04.010